El dominio de los datos: Una cuestión de poder global

Los datos se han convertido en el insumo estratégico clave del siglo XXI: incluyen registros de conductas, gustos, ubicaciones, información médica, operaciones financieras y comunicaciones que, al combinarse y examinarse, generan conocimiento anticipatorio. Quien domina esos datos influye en la atención, la economía y los procesos de decisión, tanto en el plano individual como en el colectivo. A continuación se expone quién detenta ese control, de qué manera lo ejerce, cuáles son sus efectos y qué herramientas pueden ayudar a redistribuir ese poder.

¿Qué entendemos por “datos”?

Los datos incluyen:

  • Datos personales: nombre, dirección, identificadores, número de documento.
  • Datos de comportamiento: historial de navegación, búsquedas, clics, compras.
  • Datos de localización: geolocalización de dispositivos, rutas y desplazamientos.
  • Datos sensibles: salud, orientación política, creencias religiosas, biometría.
  • Metadatos: cuándo, dónde y cómo se creó una interacción, que a veces revela más que el contenido.

Figuras que gestionan la información

  • Grandes plataformas tecnológicas: empresas dedicadas a motores de búsqueda, redes sociales, servicios de correo, comercio electrónico y sistemas operativos. Reúnen información de miles de millones de usuarios y ponen a disposición infraestructuras de análisis y publicidad.
  • Corredores y agregadores de datos: compañías que adquieren, depuran y comercializan perfiles dirigidos a anunciantes, aseguradoras y diversas organizaciones, operando normalmente de manera discreta y, en muchos casos, sin que el titular sea consciente.
  • Gobiernos y agencias estatales: recogen información con fines de seguridad, recaudación, salud pública e infraestructura, pudiendo obtener datos privados conforme a la ley o a través de mecanismos de vigilancia generalizada.
  • Empresas del sector salud, finanzas y telecomunicaciones: administran datos altamente sensibles y cuentan con la capacidad de determinar usos tanto comerciales como institucionales.
  • Pequeñas y medianas empresas y desarrolladores: capturan conjuntos de datos muy concretos, como los generados por aplicaciones de fitness o sistemas de domótica, que al combinarse aportan profundidad adicional a los perfiles.

Sistemas de supervisión

Los actores anteriores emplean diversos mecanismos para convertir datos en poder:

  • Monopolio de la plataforma: cuanto mayor es la base de usuarios, más valiosos son los datos y más difícil es para los usuarios migrar a alternativas.
  • Economía de la atención: algoritmos que priorizan contenidos para maximizar tiempo en pantalla y, por ende, ingresos publicitarios.
  • Modelos predictivos y aprendizaje automático: permiten anticipar comportamientos, optimizar precios, segmentar audiencias y manipular decisiones.
  • Integración vertical: empresas que controlan hardware, software y servicios pueden recoger datos en múltiples puntos del ecosistema (ejemplo: dispositivos, aplicaciones, nube).
  • Intercambio y venta de datos: mercados legales e ilegales donde la información se comercializa, se combina y se revende.

Por qué dominar los datos concede poder

  • Ventaja económica: la información disponible posibilita ajustar ofertas, disminuir los gastos de captación de clientes y generar ingresos publicitarios continuos, de modo que las plataformas con amplios conjuntos de datos terminan absorbiendo buena parte del valor producido dentro de una cadena económica.
  • Influencia política: la microsegmentación junto con mensajes hechos a medida favorece campañas políticas focalizadas capaces de moldear la percepción pública y modificar resultados electorales.
  • Dominio de la información: administrar qué aparece y ante quién (como rankings o recomendaciones) contribuye a dirigir la conversación social y cultural.
  • Seguridad y vigilancia: la disponibilidad de metadatos y comunicaciones permite instaurar vigilancia a gran escala, apoyar la prevención del delito o, bajo regímenes autoritarios, reforzar mecanismos de represión y control social.
  • Discriminación algorítmica: los modelos entrenados con datos sesgados pueden intensificar brechas existentes en ámbitos como créditos, seguros, empleo o justicia.

Ejemplos destacados

  • Escándalo de Cambridge Analytica: uso indebido de datos de millones de usuarios de redes sociales para perfiles psicológicos y campañas políticas, que mostró cómo datos aparentemente inofensivos pueden influir en procesos democráticos.
  • Brecha de Equifax (2017): exposición de datos financieros y personales de alrededor de 147 millones de personas, ejemplificando los riesgos de concentración de datos críticos en pocas entidades.
  • Clearview AI: recopilación masiva de imágenes públicas para reconocimiento facial, con implicaciones para la privacidad y la vigilancia indiscriminada.
  • Sistemas de puntaje social en algunos países: integración de datos públicos y privados para evaluar “confiabilidad” ciudadana, condicionando acceso a servicios y movilidad social.
  • Compartición de datos sanitarios controversiales: acuerdos entre servicios de salud y empresas tecnológicas que generaron debates sobre consentimiento, utilidad y riesgos de uso comercial de datos clínicos.

Efectos en las personas y en la sociedad

  • Privacidad erosionada: pérdida de control sobre información personal y riesgos de exposición no autorizada.
  • Autonomía reducida: decisiones influenciadas por mensajes personalizados y arquitecturas de elección diseñadas para dirigir comportamientos.
  • Riesgo económico: usos discriminatorios que afectan acceso a crédito, empleo o seguros.
  • Fragilidad democrática: manipulación de información y polarización amplificada por burbujas algorítmicas.
  • Seguridad física: vulneración de datos que revela patrones de desplazamiento, vida privada o información sensible que puede facilitar delitos.

Normativas y reacciones sociales

Las reacciones surgen de una mezcla entre normativas legales, exigencias sociales y transformaciones internas dentro de las empresas.

  • Regulaciones de protección de datos: normativas dirigidas a otorgar mayor control a los titulares sobre su información personal (acceso, rectificación, eliminación, portabilidad) y a reforzar la responsabilidad de quienes gestionan dichos datos; incluyen marcos regionales que establecen penalizaciones y exigen claridad en el tratamiento.
  • Auditorías y rendición de cuentas: revisiones externas de algoritmos, divulgación del funcionamiento de los modelos y evaluaciones independientes para identificar posibles sesgos y vulnerabilidades.
  • Movimientos de datos abiertos y soberanía de datos: propuestas que impulsan que comunidades y gobiernos administren sus datos estratégicos, con énfasis en ámbitos como salud y recursos públicos.
  • Herramientas técnicas: métodos como cifrado, técnicas de anonimización diferencial y sistemas federados que facilitan el análisis sin necesidad de concentrar información sensible.

Qué pueden hacer los usuarios y las organizaciones

  • Transparencia y consentimiento informado: exigir claridad sobre usos y duración del almacenamiento; limitar permisos en aplicaciones.
  • Minimización de datos: las empresas deben recolectar solo lo estrictamente necesario y retenerlo por períodos limitados.
  • Auditorías internas y externas: implementar revisiones de modelos y procesos para detectar sesgos y vulnerabilidades.
  • Adopción de tecnologías de protección: cifrado de extremo a extremo, anonimización robusta y soluciones de aprendizaje federado cuando sea posible.
  • Educación digital: formación ciudadana sobre riesgos de compartir datos y prácticas para reducir exposición (gestión de contraseñas, autenticación multifactor).

Perspectivas de riesgo y aspectos a monitorear

Con la proliferación del Internet de las cosas, la biometría y la inteligencia artificial, los riesgos se intensifican: se obtienen perfiles más detallados, se posibilita anticipar estados de ánimo o condiciones de salud y se incrementa la capacidad de influir en dinámicas sociales de manera inmediata. Resulta esencial supervisar la concentración de la infraestructura de IA y el manejo de datos sensibles que facilitan la automatización de decisiones de gran relevancia.

El control de los datos no es solo una cuestión técnica o comercial: define quién tiene capacidad de moldear preferencias, distribuir oportunidades y decidir qué información llega a qué ojos. La concentración de datos en manos de unos pocos crea asimetrías de poder que afectan derechos, mercados y democracias. Las soluciones efectivas combinan regulación robusta, innovación tecnológica orientada a la privacidad y una ciudadanía informada que exija rendición de cuentas. Solo con esos elementos puede equilibrarse la balanza entre el valor económico de los datos y la preservación de dignidad, autonomía y justicia social.

Por Joaquín Suárez